Year Six Mathematics
Progression Mapping

Year Six Autumn

Year Six Autumn

Year Six Spring

Year Six Spring
Use short division to divide 4- Multiply 1-and 2-digit numbers digit numbers by 1 -digit
numbers, including those which
leave a remainder; spot patterns,
leave a remainder; spot patterns,
make and test general rules, and Example:
check when an answer does not 0.07×6 fit the predicted pattern.

Example:
$4532 \div 4,6382 \div 7,5247 \div 3$,
$4783 \div 5$
Which will have an answer of
less than 1000?
Can you tell just by looking which
one will definitely have

remainder?

Identify common factors, common multiples and prime numbers.

Use written division methods in cases where the answer has up to 2 decimal places.

Example:
Example:
$=158 \mathrm{r} 2=158^{8} / 8$ What are the common factors of $158^{1 / 4}=158.25$ 24 and 30 ?
What is the smallest prime
number?
Divide numbers up to 4 digits by Solve problems which require a 2-digit whole number using the answers to be rounded to formal written method of long specified degrees of accuracy. division, making an estimate
using multiples of 10 or 100 of Example:
the divisor, and interpret
remainders as whole number
rounding, as appropriate for the
context.

Example:

$4936 \div 24$
$1392 \div 32$
$4560 \div 23$
Solve problems involving simple ratios, i.e. unequal sharing and rouping using knowledge of fractions and multiples.

Example:

The ratio of blue tiles to orange
tiles is $3: 5$. There are 16 tiles
altogether. How many are
orange?

Year Six Summer

Solve number and practical problems that involve place value in large numbers, rounding, comparison and negative numbers.	Consolidate adding and subtracting whole numbers with more than 4 digits, including using column addition and subtraction. Example:	Use appropriate strategies to multiply and divide mentally, including by multiples of 10 , 100 and 1000 , and solve scaling problems and problems involving rate.	Identify the value of each digit in numbers given to 3 decimal places and multiply and answers up to 3 decimal places; round \qquad	Solve problems using standard units; read scales with accuracy. Example: A jug contains 450 ml of water. If 150 ml is	Compare and classify geometric shapes unknown angles in any triangles, quadrilaterals, and regular polygons; find	Calculate and interpret the mean as an average. Example: Lengths of caterpillars: $3.1 \mathrm{~cm}, 3.6 \mathrm{~cm}, 3.4$	Express missing number problems algebraically and identify appropriate methods in order to solve them. Example:
Example: $57905-49$	$53407-219$ $39264+51$	Example:	whole number.	added, how much water is in the jug now? $24 \mathrm{~mm}+29 \mathrm{~mm}+30 \mathrm{~mm}$	or on a straight line.	$\mathrm{cm}, 3 \cdot 7 \mathrm{~cm}, 2 \cdot 8 \mathrm{~cm}, 3 \cdot 2 \mathrm{~cm}$	$34+a=7$
682421 rounded to the nearest ten thousand is 680000.	13872-11219	$\begin{aligned} & 243 \times 1000 \\ & 86 \times 5 \end{aligned}$	Example: Which is greater, 7.845 or 7.425 ? $0.73>0.694$	550 - 200 g	Example: Rectangles are quadrilaterals with two sets of equal sides and four right angles.	$3.2) \div 6=19.8 \div 8=3.3 \mathrm{~cm}$	
Use negative numbers in context, and calculate intervals across zero. Example:	Consolidate adding and subtracting numbers mentally with increasingly larger numbers. Example	Multiply multi-digit numbers up to 4 digits by a 2-digit whole number using the forma written method of long multiplication and solve problems involving multiplication of money and measures.	Add several decimal numbers using mental or written addition. Example:	Consolidate using 12 and 24 -hour clocks; use counting up to calculate time intervals and count on and back in hours and minutes, bridging the hour, to find start and finish times; use timetables.	Consolidate classifying angles as acute, right, obtuse or reflex. Example:	Read, interpret and construct tables, bar charts, pictograms, pie charts and line graphs and use these to solve problems	Solve mathematical puzzles and justify their reasoning; spot patterns and make and test predictions.
What is the difference in temperatu	$8429+34$		$6.39+2 \cdot 1$		$23^{\circ}=$ acute	Example: Show a bar chart of the heights of children in a class. How many children are between one point two metres and one point two nine metres?	Example: Make as many different squares of four dominoes as you can where all four sides add up to the same total.
between $6^{\circ} \mathrm{C}$ and $-3^{\circ} \mathrm{C}$?	$982384-60010$	Example: 23×4238 3452×2	${ }_{7.5+3.9+2.8}^{38.65+7.89}$	Example: How many days and weeks are in two and a half months?	$90^{\circ}=$ right angle $151^{\circ}=$ obtuse $252^{\circ}=$ reflex		
Round any whole number to a required degree of accuracy. Example: 38905 rounded to the nearest thousand is 39000.	Solve addition and subtraction multi-step problems in contexts, including money, deciding which operations and methods to use and why. Example: 23.47-20.3 $6 \cdot 39+2 \cdot 14+8 \cdot 7+23 \cdot 4$ $£ 16 \cdot 88+£ 3 \cdot 47$	Multiply 2-, 3 -, and 4 -digit numbers by numbers up to 12 using short multiplication or another appropriate formal written method and solve word problems involving multiplication of money and measures. Example: $3 \times £ 15 \cdot 48$ 8365×8 34.8×6	Subtract decimal numbers using mental or written counting up or other mental strategies. Example: 23.47-20.3 43.81-17.9 35.25-18.63	Measure areas and perimeters; understand that area is a measurement of covering and is measured in square units and that perimeter is a length measured in $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ or km , for example; recognise that shapes with the same areas can have different perimeters and vice versa. Example: Length $=12 \mathrm{~cm}$, width $=7 \mathrm{~cm}$ Perimeter $=2 l+2 \mathrm{w}$. Double 12 is 24 , double 7 is $14,14+24=38 \mathrm{~cm}$ Area $=1 \times \mathrm{w} .7 \mathrm{~cm} \times 12 \mathrm{~cm}=84 \mathrm{~cm}^{2}$	Find pairs of numbers that satisfy an equation with two unknowns and list in order the possibilities of combinations of two variables. Example: $a \times b=24$. Work out the possible pairs of numbers that a and b could be.		
Read, write, order and compare numbers up to 10000000 and determine the value of each digit.	Solve problems involving addition, subtraction, multiplication and division. Example	Solve problems involving addition, subtraction, multiplication and division. Example:	Use common factors to simplify fractions; use common multiples to express fractions in the same denomination.	Calculate the area of rectangles, parallelograms and triangles. Example:	Identify, illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius.		
Example: $4372195<7816039$	$3 \times 26-15$ $(28-15)+9$	$\begin{aligned} & 3 \times 26-15 \\ & (6 \cdot 4-4.2) \div 2 \end{aligned}$	Example:	Rectangle: Length $=6 \mathrm{~cm}$, width $=7 \mathrm{~cm}$.			
$7652771<7653672$	(6.4-4.2) $\div 2$			Area $=6 \mathrm{~cm} \times 7 \mathrm{~cm}=42 \mathrm{~cm}^{2}$			
	Use knowledge of the order of operations, including using brackets, to carry out calculations involving the four operations. Example: $\begin{aligned} & 3 \times(117-95) \\ & (3 \times 4)+16 \end{aligned}$ $45-d=21$. What is d ?	Use knowledge of the order of operations, including using brackets, to carry out calculations involving the four operations. Example: $3 \times(117-95)$ $(3 \times 4)+16$	Use knowledge of equivalence to compare and order fractions. Example: $2 / 3<5 / 6$	Calculate, estimate and compare volumes of cubes and cuboids. Example: $6 \mathrm{~cm} \times 7 \mathrm{~cm} \times 11 \mathrm{~cm}=462 \mathrm{~cm}^{3}$ $12 \mathrm{~cm} \times 8 \mathrm{~cm} \times 3 \mathrm{~cm}=288 \mathrm{~cm}^{3}$	Identify coordinates on the full coordinate grid; find missing coordinates for a vertex on a polygon or line. Example: A parallelogram has given points $\mathrm{A}:(-5,3), \mathrm{B}$: $(2,3), C:(-8,5)$. What are the coordinates of point D ?		
	Perform mental calculations, including with mixed operations and large numbers, and use inverse operations to solve missing number problems. Example: $3 \times 26-15$ $c+6=22$. What is c ?	Perform mental calculations, including with mixed operations and large numbers, and use inverse operations to solve missing number problems. Example: $3 \times 26-15$ $c+6=22$. What is c ? $64 \div(4+4)$	Add and subtract fractions, with different denominators and mixed numbers, using the concept of equivalent fractions. Example: ${ }_{5}^{1} / 6+{ }_{3}^{1} / 9$ ${ }_{2}^{5 / 6+5}+5$				

Year Six Summer

Post SATs investigation

se mathematical reasoning tinvestige and solve problems involving doubling numbers into the millions.
A wise man told an Emperor that he would like some rice. He asked the Emperor if he could have a grain

