Year Five Mathematics Progression Mapping

Year Five Autumn

Number and Place Value (NPV)	Addition and Subtraction (AS)	Multiplication and Division (MD)	Fractions, Decimals, Ratio and Percentages (FDRP)	Measures (MEA)	Geometry (GEO)	Statistics (STA)
Read and write numbers to at least 100000.	Sustain a line of enquiry; make and test a hypothesis.	Use mental strategies to multiply and divide by 4, 9, 20 and 25. Example: $450 \div 9$ 66×25	Add and subtract $0 \cdot 1$ to/from a number with 1 or 2 decimal places. Example: $0.4+0.1$ $34 \cdot 5-0 \cdot 1$	Convert between different units of metric measure (length: $\mathrm{mm} / \mathrm{cm} / \mathrm{m} / \mathrm{km}$). Example: $113 \mathrm{~mm}=11.3 \mathrm{~cm} 127 \mathrm{~cm}=1.27 \mathrm{~m}$	Use a ruler to measure lines in centimetres and millimetres.	Complete, read and interpret information in timetables using 24 -hour times. Example: Looking at a train timetable: It is 07:53 at St Pancras. How soon can you get to Paris?
Determine the value of each digit in numbers to at least 100000 and use to solve place-value additions and subtractions. Example: $43715+10$ 19473-6000	Add whole numbers with 4 digits, including using the formal written method of columnar addition (answers >10000). Example: $8316+5477$	Solve problems involving multiplication and division using knowledge of factors, doubles and halves, and times-tables.	Compare and order fractions with the same denominator Example: ${ }_{3}^{7} / 8>5 / 8$ $3 / 10</ 10$	Understand the 24-hour clock, convert times, calculate time intervals and use timetables. Example: $13: 00=1 \mathrm{pm}$ How long between 06:17 and 08:28?	Know angles are measured in degree	
Order and compare numbers to at least 100000. Example: $24987<25199<25857<26008$	Use place value and number facts to add and subtract 2-, 3- and 4-digit numbers. Example: $147+68$ 3942-801			Begin to calculate the perimeter of rectilinear shapes in cm .	Estimate and compare acute, obtuse and reflex angles. Example: 0° < Acute < $90^{\circ}, 90^{\circ}<$ Obtuse <180, $180^{\circ}<$ Reflex < 360°	
Count forward or backwards in steps of powers of 10 for any number up to 100000. Example: 1205, 1305, 1405, .. $7745,7645,7545, \ldots$	Use inverse operations to create new calculations or check answers.	Choose a mental or written method to solve problems including word problems, involving division (including 2-/3-digit $\div 1$-digit), and spot and explain patterns and relationships. Example: Divide multiples of 100 (100 to 900) by numbers 3 to 9. Explain the pattern. 10 people fit in a bus. How many buses do 740 people need?	, Recognise and use tenths and hundredths and relate them to decimal equivalents. $\begin{aligned} & \text { Example: } \\ & 3 / 5=6 / 10=0.6 \\ & 15 / 100=0.15 \end{aligned}$		Draw given angles, and measure them in degrees (${ }^{\circ}$) using a protractor.	
Round any number up to 100000 to the nearest 10 , 100 and 1000. Example: 34782 rounds to 34780,34800 and 35000	Subtract whole numbers with 4 digits, including using the formal written method of columnar subtraction. Example: 4265-2931	Recognise which numbers are divisible by $2,3,4,5,9$ and 10 .	Read, write, order and compare numbers with up to 2 decimal places. Example: $3.3<3.81$ $8.76>6.78$		Identify angles at a point on a straight line and half a turn (total 180°); use mathematical reasoning to explain findings.	
	Begin to add and subtract numbers mentally with increasingly large numbers. Example: $3568+4300$ 5482-402	Use mathematical reasoning to work out a function; use the inverse operation to find answers. Example: 2370 ㅁㅁ $=237$ $\square \times 5=45$ or $45 \div 5=\square$			Identify 90° and other multiples of 90°.	
	Use mathematical reasoning to work out a function (single operation $+/-$). Example: 3839 ㅁㅁ $=3889$ $23.5 \square \square=3.5$	Use multiplication facts and place value to multiply and divide multiples of 10 and 100 , including answers with 1 and 2 decimal places. Example: $280 \div 70$ 0.12×10				

Year Five Spring

Count forwards or backwards in steps of powers of 10 for any given number up to 1000000.	Add whole numbers and 1-place decimals using appropriate mental strategies.	Identify multiples and factors, including finding all factor pairs of a number, and common factors of 2 numbers.	Add and subtract 0.1 or 0.01 to/from numbers with up to 2 decimal places.	Convert between different units of metric measure (km / m; cm / m; cm / mm; g / $\mathrm{kg} \cdot \mathrm{L} / \mathrm{ml}$).	Know that the angles in a triangle add up to 180° and devise and test rules to find a missing angle.	Sort using a Venn diagram or a table.
	$\begin{aligned} & \text { Example: } \\ & 3568+4300 \\ & 5 \cdot 6+3 \cdot 9 \end{aligned}$	Example: $\begin{aligned} & 12=2 \times 6 ; 3 \times 4 ; 12 \times 1 \\ & 36=6 \times 6 ; 3 \times 12 ; 9 \times 4 ; 18 \times 2 ; 36 \times 1 \\ & =1,2,3,4,6 \text { and } 12 \end{aligned}$	$\begin{aligned} & \text { Example: } \\ & 13 \cdot 85+0.1 \\ & 15 \cdot 39-0.01 \end{aligned}$	Example: $100 \mathrm{~g}=0.1 \mathrm{~kg}$ $1050 \mathrm{ml}=1.05$ litres	Example: $180^{\circ}-20^{\circ}-65^{\circ}=\square$	
Read and write numbers to at least 1000000.	Add 1- and 2-place decimal numbers (including money) choosing and using an appropriate method (including columnar addition and mental methods). Example: $58 \cdot 76+32 \cdot 84$ $45.62+7.82$	Multiply and divide numbers mentally drawing upon known facts. Example: $816 \div 9$ 70×8	Round decimals with 2 decimal places to the nearest whole number and to 1 decimal place. Example: 8.47 rounds to $8.5,8$ 6.78 rounds to $6.8,7$	Add 2-digit numbers with 2-place decimals, including money, using column addition. Example: £51.72 £43.66 +	Describe the properties of triangles (including scalene, right-angled, isosceles and equilateral). Example: Equilateral: All sides and all angles are equal (60°).	Begin to read and interpret line graphs, including reading intermediate values.
Order and compare numbers to at least 1 000000. Example:	Count up to solve 4 -digit minus 4 -digit subtractions from near multiples of 1000, where column subtraction is awkward; use	Use a written method to multiply pairs of 2-digit numbers. Example:	Solve problems involving numbers with up to 3 decimal places, including in the context of measures.	Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.	Use mathematical reasoning to identify properties of different polygons, including equal sides and angles and explain findings.	
357886, 771352, 836412	column subtraction where appropriate.	24×67	Example:			
Say a number between 650 000 and 675000.	Example: 8010-3788 9013-4867	78×96	Record your heights in m . Standing on top of each other, how tall would you be?	Example: 12 inches is about 30 cm .	Example: Draw polygons using dots and marked radii around circles and calculating angles between 2 radii.	
Determine the value of each digit in numbers to at least 1000000 and use to solve place value additions and subtractions. Example: 940 652-20 020 $732546+199999$	Add and subtract numbers mentally with increasingly large numbers. Example: $3465+299$ 6000-3867	Multiply and divide numbers by 10 and 100 , including decimal numbers and those leading to decimal answers.	Find unit and non-unit fractions of 2 and 3 digit numbers.		Identify and define a polygon; distinguish between regular and irregular polygons based on reasoning about equal sides and angles. Example: Regular pentagon: 5 equal sides; 572° angles	
Order and compare 6-digit numbers and place on a number line.	Solve addition 1-step and multi-step problems using mental addition. Example: An adult's ticket costs $£ 3.80$ more than a childss, which costs $£ 14 \cdot 60$. How much is the adult's ticket?	Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers; establish whether a number up to 100 is prime and recall prime numbers up to 19 .	Compare and order fractions, including mixed numbers, whose denominators are all multiples of the same number. Example: $4^{1 / 4,4^{3} / 8,4^{7} / 8}$ $3^{7} / 10>3^{1 / 2}$		Identify and define a polygon; distinguish between regular and irregular polygons based on reasoning about equal sides and angles. Example: Regular pentagon: 5 equal sides; 572° angles	
Find square numbers and square roots; find a pattern; write and test a rule.	Use counting on and bonds to 100 to add to any 2-place decimal to find the next whole number.	Recognise and use square numbers and their notation (${ }^{2}$).	Place fractions on a number line and count in steps of a given fraction, using equivalence.			
Example: Describe the difference between consecutive square numbers.	Example: $\begin{aligned} & 5.71+\square=6 \\ & 7.56+\square=\square \end{aligned}$		Example $=1 / 8,{ }^{2} / 8,{ }^{3} / 8,4 / 8,{ }^{4} / 8,1 / 8$,			

Year Five Spring

Subtract amounts of money and other 1 and 2-place decimal numbers in the context of measures.	Choose an appropriate method to divide one number by another, including for larger numbers requiring a written procedure.	Recognise mixed numbers and improper fractions and convert from one form to the other; look for patterns and write rules. Example: ${ }^{20} / 7=2^{6} / 7$ Compare numerators. Are they both odd, both even or one of each?
Investigate patterns in addition using knowledge of bonds and a systematic approach. Example: $\square . \square^{+} \square \square \square=5.55$ (knowing: the digits in the hundredths column add to> 10 ; there is a 3 in the tenths column)	Choose an appropriate method to multiply numbers, including for those larger numbers requiring written procedure.	Multiply proper fractions by whole numbers in a practical or real-life context.
Use columnar addition to add more than 2 numbers with up to 4 digits. Example: $\begin{aligned} & 4921+373+582 \\ & 8364+918+1008 \end{aligned}$	Use short division to divide 3-digit numbers by 1-digit numbers (including those that leave a remainder). Example: $645 \div 3$ $379 \div 4$	
Identify patterns and make predictions. Example: Reverse 1919 and subtract the smaller (9191-1919 = 7272). Reverse 7272 and subtract the smaller ($=4545$). Repeat until a 3 -digit number (909). Choose a different starting number; identify the same pattern.	Use short multiplication to multiply 3 digit numbers by 1 -digit numbers, rounding to estimate answers. Example: 4×261 427×3	

Year Five Summer

Interpret negative numbers in context; count forwards and backwards with positive and negative whole numbers, including through 0 ; solve problems in the context of temperature. Example: $-7+22$ What is the decrease in temperature between -8° and -19° ?	Use rounding to check answers to calculations and determine, in the context of a problem, level of accuracy; use addition to check subtraction.	Multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000. Example: 25.842×1000 $3872 \div 100$	Add and subtract $0.1,0.01$ or 0.001 to/from numbers with up to three decimal places.	Measure and calculate the perimeter of composite rectilinear shapes in cm and m . Example: Divide ' L ' and ' T ' shapes into rectangles to find their area and perimeter.	Draw given angles and straight lines to given lengths to create a triangle.	Draw line graphs; solve comparison, sum and difference problems using information presented in a line graph. Example: Using a graph of temperature at different altitudes: What is the temperature at 11 km if it is 26° at sea level?
Round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000 Example: 385 922: 385 920, 385 900, 386000,390 000 and 400000	Subtract 2-place decimal numbers (including money) using counting up or mental methods. Example: $\begin{aligned} & £ 14 \cdot 75-£ 3 \cdot 49 \\ & £ 26 \cdot 80-£ 13 \cdot 20 \end{aligned}$	Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes. Example: A rectangle has a 24 -square area and 26 square sides. How long are the other sides?	Write equivalent fractions and use equivalence to reduce fractions to their simplest form, including writing improper fractions as mixed numbers.	Solve problems involving time, telling the time using 12 - and 24 -hour clocks, and converting between units of time. Example: A train leaves London at 06:34 and arrives in Paris at 09:23. How long did the journey take?	Identify 3 D shapes, including cubes and other cuboids, from 2D representations.	Estimate intermediate values on line graphs. Example: Using a graph of temperature: Give intermediate temperatures to the nearest degree.
Solve number problems and practical problems that involve all of the above.	Solve addition and subtraction problems, including multi-step and word problems; decide which operations and methods to use and why. Example: Parveen spent $£ 4 \cdot 25$ on a ticket, $£ 2 \cdot 50$ on popcorn and $£ 1 \cdot 20$ on cola. How much change did she get from $£ 10$?	Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign. Example: A rectangle has 211 m sides and a 30 m perimeter. What is its area?	Compare and order fractions whose denominators are all multiples of the same number. Example: $5 / 8>1 / 2$ $5 / 6>{ }^{2} / 3$	Calculate and compare the area of rectangles (including squares), including using standard units, cm^{2} and m^{2}, and pursue a line of enquiry. Example: Find as many squares and rectangles as possible where the area $\left(\mathrm{cm}^{2}\right)$ equals the perimeter (cm).	Recognise and use the properties of rectangles to deduce related facts and find missing lengths and angles. Example: Draw a rectangle $6 \mathrm{~cm} \times 12 \mathrm{~cm}$ and its diagonals. What are the angles where they cross?	
Read Roman numerals to 1000 (M) and recognise years written in Roman numerals. Example: $\begin{aligned} & \text { CMXCIX }=999 \\ & \text { MMXII }=2012 \end{aligned}$	Add whole numbers with more than 4 digits, including using formal written methods such as columnar addition. Example: $34261+23585$ $12843+36512$ $12843+36512$	Divide numbers up to 4 digits by a 1 -digit number using the formal written method of short division and interpret remainders appropriately for the context. Example: $5296 \div 4$ $3256 \div 3$	Read, write, order and compare numbers with up to 3 decimal places. Example: $3.218<4.339$ $0.065<0.173$	Estimate the area of irregular shapes. Example: Find the area of leaves by drawing round them on squared paper, calculating the area of the contained rectangle and counting the squares around the edges.	Identify, describe and represent the position of a shape following a reflection or translation using the appropriate language; know that the shape has not changed; describe the relationship between the shapes' co-ordinates. Example: A rectangle with corner points (1, 2), (3, 2), $(1,5)$ and $(3,5)$ is moved five spaces along the x axis and three spaces up the y axis. What are the new corner points?	
	Subtract whole numbers with more than 4 digits, including using formal written methods such as columnar subtraction. Example: 73008 - 61325 45306 - 27123	Use short multiplication to multiply 4-digit numbers by 1 -digit numbers, rounding to estimate answers. Example: 3×5243 6×4054	Read and write decimal numbers as fractions. Example: $0.71=71 / 100$	Estimate and begin to find volume and capacity. Example: Build a cube/cuboid with cubes, noting its base area and number of layers; then estimate its volume by the number of cubes before drawing and labelling it.	Read and mark coordinates in the first two quadrants and plot and join coordinates to create a polygon.	
		Multiply numbers up to 4 digits by a 1 - or 2-digit number using a formal written method, including long multiplication for 2-digit numbers. Example: 17×348 18×426	Solve problems involving numbers with up to 3 decimal places. Example: Guess the possible weights of the mystery parcel: it is a 3-place decimal between 0 kg and 1 kg with at least one 5 .	Use all 4 operations to solve problems involving measure using decimal notation, including scaling. Example: Children make a scale model of a room $(4.2 \mathrm{~m} \times 3.3 \mathrm{~m} \times 2.4 \mathrm{~m})$ and choose furniture to scale, dividing measurements by 10 .		

Year Five Summer

Identify factors of 2-digit numbers, Multiply proper fractions by whole pursue a line of enquiry and solve miners, supported by materials and their knowledge of factors. generalisations.

Example:
20×85 : double 85 , then multiply by 10
(2 and 10 are factors of 20).
Recognise and use cube numbers and Recognise and use thousandths and their notation (${ }^{3}$).

Example: $4^{3}=4 \times 4 \times 4$
 $4^{3}=4 \times 4 \times 4=64$
 $5^{3}=5 \times 5 \times 5=125$

Solve problems (including word
Add and subtract fractions with the
problems and problems about measure) same denominator and denominators
involving multiplication and division, that are multiples of the same whole including scaling by simple fractions and number, including answers >1.
problems involving simple rates.
Example:
My socks shrank to $1 / 3$ of their normal
My socks shrank to $1 / 3$ of their normal
size. They used to be 18 cm long. How size. They used to be
long are they now?
A roofer can lay 40 tiles an hour. How many can he lay in 36 hours?
Multiply numbers up to 4 digits by a 1- Recognise the per cent symbol (\%) and or 2-digit number using a formal written understand that it relates to 'number of method, including long multiplication parts per hundred'; write percentages as for 2-digit numbers.
parts per hundred'; write percentages as a fraction with denominator 100 and as a decimal.

Example:
$15 \%={ }_{30}^{15} / 100=0.15$
$30 \%={ }^{30} / 100=0.3$
Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,15,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25 .

Example:
Example:
$0.5=1 / 2=50 \%$
$1 / 4$ of 28 childre
/4 of 28 children like swimming. What is children is this?

