Year Three Maths Progression Mapping

Number and Place Value

 (NPV) Read and write numbers up to 1000 in numerals and in words.
Example:

 Three hundred and ninety-four $=394 \quad \begin{aligned} & \text { Example: } \\ & 25+75=100\end{aligned}$ Seven hundred and six $=706$Recognise the place value of each digit in a 3 -digit number ($100 \mathrm{~s}, 10$ s, 1s).

Example:

$300+60+7=\square$
$700+\square+4=754$

Addition and Subtraction

Recall or quickly find multiples of 5 bonds to 100.

Example:

 $100-35=65$Use number bonds and number patterns to add and subtract 1-digit numbers from 2-digit numbers

Example:
 $7+5,37+5,87+5$
 $15-7,45-7,75-7$

Add several numbers, spotting doubles and bonds.

Example:
 $11+6+9$
 $9+7+7$

Add and subtract multiples and near multiples of 10 by counting on and back or by using number facts and place value.

Example:
$26+61$
93-30

Work systematically, using logical reasoning and deduction, to find number pairs that total a 2 -digit number.

Example:

Find all
or 99
or 99

Multiplication and Division

 (MD)ecall doubles of numbers 1 to 20, derive the related halves and apply easoning skills to choose numbers th will give the longest halving chains.

xample

Halve even numbers / add 1 to odd numbers to make the longest halving chain, starting < 40

$$
(10 \rightarrow 5 \rightarrow 6 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 1)
$$

Double 2-digit numbers to 50 and halve 2-digit numbers up to 100 .

Example

Double $24=48$
$56 \div 2=27$

Recall and use multiplication and division facts for the $2,3,4,5$ and 10 multiplication tables.

Example:

$\square \times 3=36$
$50 \div 5=\square$
Understand that division is the inverse of multiplication.

Example:
$\times 3=18 ; 18 \div 3=6$
$\times 4=28 ; 28 \div 4=7$

Understand that a remainder is the mount left over after a division and begin to understand the patterns of remainders.

Example:
$76 \div 10=7$, r6
Explore which numbers, 3 to 30 , give remainder 1 when divided by 3 .

Recognise, find and write fractions Tell and write the time to the Draw and make 3D shapes using f a discrete set of objects: unit nearest 5 minutes from an modelling materials.
fractions and non-unit fractions analogue or digital clock, including
with small denominators, e.g. $1 / 2$, using Roman numerals from I to XII.
$1 / 3$ and $^{1} / 4 \mathrm{~s}$ of multiples of 2,3 and
visual representations.

Example:

${ }_{1} / 4$ of 12 is 9
$1 / 3$ of $21=7$
Understand fractions as parts of a Know the number of days in each Recognise 3D shapes in different whole and compare unit fractions. month, year and leap year and use orientations and describe them month, year and leap year and use
this to try different approaches and
find ways of overcoming
difficulties.
Example:
Referring to a calendar: How many
Thursdays in January?
Understand that a fraction is an Solve number and practical
equal part of a whole and that a problems using place value to add
unit fraction is one part and a non- and subtract amounts of money. unit fraction is several parts.

Example:
 $£ 5 \cdot 00+£ 3 \cdot 16$
 $78 p-40 p$

Look for patterns, make predictions Measure and compare lengths; and begin to see the relationship ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$) and capacity (ml / L). between finding fractions of amounts and division

Example:

Example:

$15 \mathrm{~cm}<30 \mathrm{~cm}$
$1 \mathrm{~L}>500 \mathrm{ml}$

Understand 2- and 3-digit numbers; find 1, 10 or 100 more or less than a given number without difficulty.	Find pairs with a total of 100 or a maximum total of £1.00. Example: $53+47=100$ $81+19=100$	Understand the relationship between doubling and halving. Example: Half of 36 is 18 . What is double 18 ?	Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators, e.g. identify $/ 1 / 2,,^{1} / 3 s^{1} / 4 s, 1 / 15 s,{ }^{1} / 65$ and $1 / 8 s$, and say how many are needed to make a whole.	Tell and write the time to the nearest minute from an analogue clock, including using Roman Numerals from I to XII, or a digital clock. Example: 4:07 = seven minutes past four 11:34 = twenty-six minutes to twelve	Identify and draw 2D shapes, and describe their properties. Example: Square: 4 equal sides; 4 right angles Triangle: 3 straight sides; 3 angles
Round numbers to the nearest 10 and 100, using a number line. Example: 425 rounds to 430, 400 662 rounds to 660,700	Add numbers mentally, including 2-digit and 3-digit numbers. Example: $351+46$ $368+102$	Recall and use multiplication and division facts for the $2,3,4,5$ and 10 multiplication tables. Example: $\square \times 4=48$ $11 \times 10=\square$	Mark and identify simple fractions on 0 to 1 lines.	Calculate time intervals and compare durations of events. Example: It was 10 past 6 . We played for 15 minutes. What time is it now?	Identify right angles, recognise that 2 right angles make a half turn, 3 make $/ 4$ of a tur and 4 complete a turn; identify whether angle.
Identify, represent and estimate numbers using different representations including a number line.	Subtract 2-digit numbers from 3-digit numbers, and begin to subtract 3-digit numbers from 3-digit numbers, using counting up and by looking for patterns in the digits. Example: 141-76 123-87	Multiply 2-digit numbers by 4 by doubling twice, and divide 2-digit numbers by 4 by halving twice (wholenumber answers). Example: $4 \times 16: 16 \times 2=32 ; 32 \times 2=64$ $32 \div 4: 32 \div 2=16 ; 16 \div 2=8$	Recognise, find and write fractions of a discrete set of objects: unit fractions and non unit fractions with small denominators, for example $1 / 2 \mathrm{~s},{ }^{1} / 3 \mathrm{~s}$, ${ }^{1} / 4 \mathrm{~s}$, and ${ }^{1} / \mathrm{ss}$ of amounts (whole number answers only).	Begin to measure the perimeter of simple 2D - shapes.	
Multiply and divide by 10 (whole-number answers). Example: $850 \div 10$ $\square \times 10=460$	Count up to find change from $£ 5$ and $£ 10$ (multiples of $5 p$). Example: £5.00-£2.80 £10-£4.65	Solve problems, including missing number problems, involving multiplication and division. Example: $200 \div 5=\square$ $8 \times \square=240$	Recognise and show, using diagrams, equivalent fractions with small denominators. $\begin{aligned} & \text { Example } \\ & 1 / 2=2 / 4 \\ & 4 / 5=8 / 10 \end{aligned}$	Know the number of seconds in a minute. Example: Ask children to estimate when 1 minute has gone by.	
Count from 0 , in steps of 10,50 and 100 , and find 10 or 100 more or less than a given number; spot patterns in both systems to solve problems. Example: Count in 10 s from 4 to 1004 , in 50 s from 4 to 1004 and in 100 from 4 to 1004 . Write the numbers that would be in 2 and in all 3 counts.	Solve simple word problems using addition or	Double numbers, and halve even numbers, up to 100 by partitioning. Example: 2×68 $94 \div 2$ For a sports day, 42 oranges are cut into half. How many halves are there?			
Begin to compare and order numbers up to 1000 using < and > signs. Example: $375<526$ $420>201$, Begin to add numbers with up to 3 digits, using formal written methods of columnar addition (1s greater than 10 s or 10 s greater than 100 s). Example: $659+225$ $447+526$ $466+268$	Multiply numbers between 10 and 25 by 3, 4 and 5. Example: 3×24 21×4 5×16			
Work systematically and make generalisations. Example: Investigate how many 3-digit numbers there are where the 10 s number is a 3 . How many will there be in all the three-digit numbers? How do you know?	Investigate patterns when adding numbers, estimate the answer to a calculation and begin to use a systematic approach, including using inverse operations, to check answers. Example: Add palindromic number pairs, make predictions and test them. Spot a pattern in the relationship between the 100s and 1 s .	Multiply and divide multiples of 10 by 3, 4 and 5 (with no remainders). $\begin{aligned} & \text { Example: } \\ & 3 \times 40 \\ & 120 \div 4 \end{aligned}$ 15×20			
		Begin to use the grid method to multiply 2 -digit			

Recall and use multiplication and division facts for
Add and subtract fractions with the same
denominator within one whole.
Add and subtract amounts of money to give
change, using both $£$ and pin practical
Recognise angles as
description of a turn
Example:
£10- f 3.99 Compare and order unit fractions, and

fractions with the same denominators. $\underset{\substack{\text { Example: } \\ 3 / 6<1 / 6 \\ 3 / 6 \gg 1 / 5}}{ }$ | Find change from $£ 10$ and begin to find change from |
| :--- |
| $£ 20$. |
| Example: |
| $£ 10-£ 4.69$ |
| $£ 10-£ 5.32$ |
| $£ 20-£ 12.55$ |
| | and 10 mutipication tables. Example:

Cows have four legs. How many legs are there on 12 cows? Example:
$363-99$
$350-110$ Example:
$9 \times 4=0$

Compare and order numbers up to 1000 , using <
and $>$ signs.
Understand the relationship between multiplication
and divisis.
xample:
Example:
$90 \div=-\square=\square \times 3=90$
$160 \div 4=\square 04=160$
Example:
3755526
$420>201$
tind p
patters

patterns.
$\begin{array}{l}\text { Example: } \\ \text { Use pairs }\end{array}$

Example:
Use earis of consecutive digits to make two
peld
palindromic numbers and subtract them (767-676;
repeat for all possible subtractions and explain
atterns.
stimate the answer to a calculation and use inve
perations to check answers (use addition to check
Example:

Write and calculate mathematical statements for
multiplication using multiplication tables, including
multipicication using multiplication tables, including
for 2-digit numbers times 1 -digit numbers, using for 2-didit numbers times 1 -didit numbers, using
mental and progressing to formal written methods
for example using srid methodd to mental and progressing to formal written metho
for example using grid methods to multiply 2 -dig numbers by $3,4,5$, and 8 .

); Example: $26 \times 34 \times 16$

Begin to make generalisations and solve problems, including missing number problems and word
probiems, involving 2 -digit by 1 -digit multiplication problems, involving 2 -digit by 1 -digit multiplicat
or division. Example:
Example:
Chidren use the digits 2,5 and 8 to create all the
oossinfe possible combinations of $\square \times \square$. They extimate at the
nswers, use answers, use the grid method to work them out,
note which combination gave the answers, use the grid metho to
note which combination gave the largest and
smallest answers, and order all the combinations smallest answers, and order all the combination
from smallest tol largest product.
se number facts to add and subtract numbers number and 10 s, and a dig-digit number and 100s, and explain their methods.
Example
$532-5$
$356+60$
$785-30$
Choose an appropriate strategy (mental or witten) o solve addition of 3 -digit numbers. Example:
$351+100+204$
$356+278$
$356+278$

Add numbers with up to 3 digits using colum Add umbers with up to 3 digits using colum mprovement.
Example:
$426+173127+842$
hildren aim to find pairs of 3 -digit numbers that ad
5881
Use reasoning skills to invent appropriate addition questions.
Xample:
Write at least 5 pairs of additions where the
difference between the first aid wition (of multiples
10) and the second addition is 15
solve positive integer scaling problems and correspondence problems
connected tom objects.

Example:
Find the height of a giant 8 times taller than me.
men

Write and calculate mathematical statements for division using the multiplication tables that they
know, using mental and progressing to for know, using mental and progressing to formal
written methods, for example divide by 3 .
with and with with and without remainders (answers less than 20 . Example:
$26 \div 4$
$21 \div 5$ $21 \div 5$
Divide numbers just beyond the range of known

table facts by subtracting 10 times the divisor. | Example: |
| :---: |
| $65 \div 5$ |
| 15 | $65 \div 5$

$42 \div 3$
interpet and present d Example: \square Using a pictogram showing favourite games:
What does each picture represent? How mand What does each picture represent? How many
children prefer board games? Present the children prefer board games? Present
information on a bar chart.
Solve 1-step and 2-step questions for Solve 1 -step and 2 -step questions for example, 'How many more?' and 'How many
fewer') using information presented in fewer?') using information presented in
scaled bar charts and pictograms and tables. Example: Draw a bar chart showing the weights of toys.
How much tow much heavier is the toy elephant than
the mouse? Was the tallest toy the heaviest?

 $$
9 \mathrm{~cm}+1 \mathrm{~cm}+2 \mathrm{~cm}+2 \mathrm{~cm}+5 \mathrm{~cm}+
$$

One pizza is divided into $1 / 5 \mathrm{~s}$ and another into $2 \mathrm{~cm}+2 \mathrm{~cm}+1 \mathrm{~cm}=24 \mathrm{~cm}$
$1 / 4 \mathrm{~s}$. One child has 3 slices from the first pizza $2 \mathrm{~cm}+7 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}+1 \mathrm{~cm}+$ $1 / \mathrm{s}$. One child has 3 slices from the first pizza $2 \mathrm{cc}+7 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}+1 \mathrm{~cm}+$ and another has s sices from the second
pizza. Is this fair, or does one child get more
pizza? Which pizza. Is this fair, or d
pizza? Which child?
Recognise that tenths arise from dividing an Estimate and read time with increasing
object into 10 $\begin{array}{lll}\text { Recognise that tenths arise from dividing an } & \text { Estimate and read time with increasing } \\ \text { odject into } 10 \text { equal parts and in dividing 1- } \\ \text { digitit numbers or ouantitites by 10. }\end{array}$
 Example:
$1 / 10$ of $240=24$
120 $0 \div 10=3$ Example

Example:
$7: 27 \mathrm{am}=$ tw
$7: 27 \mathrm{am}=$ twenty-seven minutes past seven in he morning
How many times do you think you could write
your name in a minute?
your name in a minute?
Tell and write the time from 12-hour and 24-
hour clocks. hour clocks.
Example:
Example.
12:0 $=$ noon
1:00 $=3 \mathrm{~mm}$

