Year Two
 Mathematics Progression Mapping

Year Two Autumn

Number and Place Value (NPV)	Addition and Subtraction (AS)	Multiplication and Division (MD)	Fractions, Decimals, Ratio and Percentages (FDRP)	Measures (MEA)	Geometry (GEO)	Statistics (STA)
Count in steps of 2 and 5 from 0 , and in tens from any number, forward and backward. Example: Jack jumps in 10s along the beaded number line. Jack makes three jumps. Where does he land? Jemma jumps in 5 s . Where will she land if she makes five jumps? $47,57,67 ; 91,81,71,61 ; 23,33,43$	Know all the pairs of numbers which make the numbers up to 10 . Example: $\begin{aligned} 5 & =5+0,4+1,3+2 \\ 8 & =8+0,7+1,6+2, \\ 5 & +3,4+4 \\ 1 & =9+0,8+1,7+2, \\ 6 & +3,5+4 \end{aligned}$	Begin to find doubles and near doubles of numbers to 15 .		Understand the need for a standard unit. Example: We could measure with crayons, but as the crayons are all different lengths, we do not know if the item is 10 long crayons long or 10 short crayons long. We need all the crayons to be the same length.	Identify and describe the properties of 2 D shapes, including the number of sides and line symmetry in a vertical line. Example: Triangle: three straight sides, no right angles, has line symmetry Pentagon: five straight sides, no right angles, has line symmetry.	Sort objects using Venn diagrams and two-way Carroll diagrams and understand the overlap in a Venn diagram. Example: Sort 2D shapes in a Venn diagram: Symmetrical / Triangles / Both / Neither
Begin to compare and order numbers from 0 to 100 using <, > and = signs, and work systematically to find all possible inequalities. Example: $85>44$ $27<51$ Children write the numbers $23,57,84$ and 75 in order from smallest to largest. They then write as many inequalities as they can using these four numbers.	Begin to understand the inverse relationship between addition and subtraction. Example: $\begin{aligned} & 5+4=9, \text { so } 9-5=4 \\ & 2+6=8, \text { so } 8-2=6 \\ & 2+5=7, \text { so } 7-2=5 \end{aligned}$	Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s from 0 to learn multiples of 2,5 and 10 .		Begin to know whether to measure in cm or m. Example: Do you think it would be good to measure the length of your finger in metres? Why not? What would be better?	Compare and sort common 2D shapes and everyday objects.	
Locate and place 1- and 2-digit numbers on a beaded and landmarked line and a 1-100 square.	Solve problems with addition and subtraction applying their increasing knowledge of mental and written methods.			Begin to estimate and measure in cm . Example: What might be smaller than 1 cm long? Between 1 cm and 5 cm long?	Use mathematical vocabulary to describe position, direction and movement including movement in a straight line. Example: Turn a half turn clockwise. Take a step to the left. Move three steps backwards.	
Begin to recognise the place value of each digit in a 2 -digit number and find and record all possible amounts using a given number of 10 p and $1 p$ coins. Example: $45=40+5$, four 10 s and five 1 s $36=$ $30+6$, three 10 s and six 1 s	Say all bonds to 10 and know them by heart. Example: $10=10+0,9+1,8+2,7+3,6+4,5+5$			Begin to estimate and measure in m. Example: How long do you think the classroom might be? Is the length less than 5 m , between 5 and 10 m or more than 10 m ? Is a car more than 1 m long or less than 1 m long?	Distinguish between rotation as a turn and in terms of right angles for quarter, half and three quarter turns (clockwise and anticlockwise).	
	Use number facts to solve related subtractions. Example: Use 9-4 to work out 39-4 and 99-4 Use 7-5 to work out 27-5 and 47-5 Use 6-3 to work out 36-3 and 27-3			Combine amounts to make a particular value up to $£ 1.00$. Example: $\begin{aligned} & 10 p+2 p+2 p=14 p 10 p+10 p+5 p= \\ & 25 p \end{aligned}$		

Begin to write word problems and relate known number bond

Example

A bird lays 10 eggs. A snake sneaks up to the nest and steals three eggs. How many are left?
A superhero has been trapped by her enemy who plans to take all her super powers. The enemy knows six of the superhero's super powers. The hero has ten powers in total. How many

Recognise and
bonds to 10.
Example
$10=10+0,9+1,8+2,7+3,6+4,5+5$
$100=100+0,90+10,80+20,70+30,60+40,50+50$
Show that addition of two numbers can be done in any order (commutative).

Example:
$8+2=2+5$
$8+2=2+18$
$5+21=21+45$
Recall and use addition and subtraction facts to 20 fluently.
Example:
$20=20+0,19+1,18+2,17+3,16+4,15+5,14+6,13+7$, $12+8,11+9,10+10$

Use number facts to solve related additions and begin to think and record systematically.

Sse $5+3$ to work out $25+3$ and $85+3$
Use $4+7$ to work out $14+7$ and $34+7$
Use $6+4$ to work out $16+4$ and $16+5$
Add and subtract mentally a 2 -digit number and tens, including adding or subtracting 10 to and from any number up to 100 (positive answers only).

Example:
$43+10$
$51+30$
62-10
47-20
Solve problems with addition and subtraction using concrete objects and pictorial representations.

Example:
Work out $44 p+21$ p by using and counting coins.
Begin to add and subtract two 2 -digit numbers by counting on or back in 10 s and 1 s .

Year Two Spring

Add and subtract 10 in order to add or Arrange objects into arrays, write the esponding multiplication and ate all possible arrays for given number of cubes.

Example

Use 4

11
Children use 12 interlocking cubes to
11
make as many differ
Use 28-10 to work out 28-9 or 28-
an. Repeat for 18 cubes and then for 24 cubes

Begin to write divisions as
multiplications with a missing number.

Example

$2 \div 4=\square, \square \times 4=12$
$15 \div 3=\square, 3 \times \square=15$
$14 \div 2=\square$, $\square \times 2=14$

Understand division as grouping

Example:

$\times 2=10$: ten socks divided into pairs will make five pairs.
$\times 6=30$: thirty pencils divided into pots of six pencils will fill five pots.
$\square \times 4=24$: twenty-four buns divided into packs of four will make six full packs.

Solve problems involving multiples of 2, 5 and 10 in a practical context, using coins and objects.

Example:

There are two baby birds sitting in each nest. There are three nests in the tree. How many baby birds?
There are 10 petals on each flower.
here are four flowers. How many petals?
An apple costs 12 p. If you only had two pence coins, how many would you
need
to pay for the apple?

Recognise and use symbols for pounds (f) and pence (p) with no zeros in the 10 p place and use coins to solve simple problems involving addition.

Example

$65 p+32 p$
$25 p+59 p$
$27 p+67 p$

Recognise and know the values of all coins and notes up to $f 20$

Example:

$1 p, 2 p, 5 p, 10$ p, 20p, 50 p, $£ 1, £ 2$,
£5, $£ 10$, $£ 20$

Find all possible amounts using three coins ($1 \mathrm{p}-£ 2$).

Example:
Children find all the possible
amounts with three coins of different colours; gold, silver and copper (not including 5 p)
epresentations, including the ne in any order number from another cannot. beyond 100 .

Compare and order numbers

 from 0 up to 100 ; use $<,>$ and $=$ signsRecognise and use the inverse relationship between addition and subtraction and use this to check

Example:
Example:
Sam has four 5 p coins. How much
21 is not the same as $21-45$
$12+47$ is the same as $47+12$,
47 is not the same as $47-12$ money does he have?

$$
\begin{aligned}
& \text { Scarlet has saved } 10 \text { p a week for six } \\
& \text { weeks. How much has she saved? }
\end{aligned}
$$

calculations and solve missing number problems.

Example:
$32+54=86$, so $86-32=54$
$22+75=97$, so $97-75=22$ $53+33=86$, so $87-53=33$

A four by three array shows $4 \times 3=12$
A five by four array shows $5 \times 4=20$ Subtract mentally two 2-digit numbers, Show that multiplication of two including working out small differences between two 2-digit numbers using knowledge of complements to 10 and place value.

Example: $\quad 3 \times 6=18$ is the same as $6 \times 3=18$ but
$60-52$ by adding 8

$$
\begin{array}{ll}
18 \div 3 \text { is not the same as } 3 \div 18 \\
3 \times 9=27 \text { ic the }
\end{array}
$$

$52-46$ by counting up from 46 to $50,3 \times 9=27$ is the same as $9 \times 3=27$ but to 52
$66-32$ by counting back 30 , and then 2
$37 \cdot 9$ is is as 9×3

Solve problems with addition and
Solve problems involving multiplication Find a quarter of numbers, up to subtraction using concrete objects and and division using materials, arrays, pictorial representations, including repeated
addition, 'clever counting', mental methods and multiplication and division facts, including problems in contexts.

Example:

The monsters have five legs each.
those involving quantities and measures.

Example:
50-46
43-38
$43-38$
$54 p+73 p$ $1000 \mathrm{~g}=1 \mathrm{~kg}$

ecognise, find

ractions ${ }^{1} / 4$ and ${ }^{2} / 4(1 / 2)$, and begin to recognise, find, name measure length/height in any and write $1 / 3$ and $/ 4$, of a set of direction (m / cm); mass/weight objects or quantity. (kg/g); temperature (${ }^{\circ} \mathrm{C}$); capacity $(\mathrm{I} / \mathrm{ml})$ to the nearest appropriate unit using rulers, scales, thermometers and measuring vessels.

Example:

A bag of flour weighs 1 kg How long is your hand in cm ?

Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change.

Example:
I buy something for $£ 6$ and I pay
with a $£ 10$ note. How much
change do I get?
Recognise the equivalence of ${ }^{2} / 4$ and $1 / 2$.

Example:
$1^{2} / 4=1 \frac{1}{1}$

Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity, and ask and answer questions about totalling and comparing categorical data.

Example:

Create a pictogram showing how children in our class like to come to school and use it to answer questions such as: How many children prefer to walk? tity,

40 , by halving twice.

Example:
 xample: / 4 of $20=5$
 $/ 4$ of $20=5$
 $/ 4$ of $24=6$
 $$
{ }^{1} / 4 \text { of } 40=10
$$

Recognise and use symbols fo pounds ($£$) and pence (p) and find more than one way to solve a money problem ($£ 1,10$ p and 1 p coins).

Example:
Children investigate what amounts of money they can make using five coins from piles of $£ 1$, 10 p and $1 p$ coins. What is the largest amount of money you can make? And the smallest?
Compare and order lengths, mas results using > < and

Example:
Pencil $12 \mathrm{~cm}>$ crayon 8 cm Apple 100 g < potato 200 g
,

Example:
$3 / 4$ of $16=12$
t/ of $12=4$

xample:
 $1 / 2$ of $6=3$ ${ }_{1}^{1} / 4$ of $12=3$ 3 of $12=4$

Year Two Summer

Begin to see that when counting from 100-200, Subtract numbers using concrete objects and pictorial
 Solve missing number multiplications by

 representations, e.g. number lines, todigit numbers (positive answers only).

Example:

Work out 76-35 using Fly on the 100-square to count back three 10 s first (to 46) and then five $1 \mathrm{~s}(45,44,43$, 42,41). So $76-35=41$.

Begin to recognise the place value of each digit

 in a 3-digit number.
Example:

$457=400+50+7$, four 100 s, five 10 s and seven Example:
$34+3$
$214=200+10+4$, two 100 s, one 10 and four $1 \mathrm{~s} 34+7$
$739=700+30+9$, seven 100 s, three 10 s and

nine 1 s

Read and write numbers to at least 100 in numerals and in words.
$38+6$

Subtract mentally a 2-digit number and ones, including subtracting any 1 -digit number from a 2 -digit number using number facts or bridging 10.

Example:
45-8
45-8
65-6
$72-3$
72-3
Add mentally two 2-digit numbers, using partitioning and number facts.

Example:

$31+26=50+7=57$
$38+47=70+15=85$
$76+16=80+12=92$
Subtract mentally two 2-digit numbers, including subtracting one 2 -digit number from another by counting back in 10 s and 1 s , not crossing 10 s .
counting up in steps.

$\square \times 2=14$
 $\square \times 2=14$ $\times 5=20$
 $\square \times 3=12$

Double and halve multiples of 10 and 5 and 2-digit numbers ending in $1,2,3$ or 4 , answers less than 100 .

Example

Double 15 is 30.
Double 40 is 80 .
Double 23 is 46 .

Count in 3 s , multiply and divide by 3 using arrays, representations and concrete objects, and begin to know the 3 times table.

Example:
$1 \times 3=3,2 \times 3=6,3 \times 3=9,4 \times 3=12 \ldots$

Use mathematical reasoning to identify and explain patterns and use these to predict answers.

Example

$3 \times 2,3 \times 3,3 \times 4,3 \times 5,3 \times 10$
$4 \times 2,4 \times 3,4 \times 4,4 \times 5,4 \times 10$
$5 \times 2,5 \times 3,5 \times 4,5 \times 5,5 \times 10$
Understand that division and multiplication are inverse operations.

Example

$9 \div 3=3$ and $3 \times 3=9$
$5 \times 3=15$ and $15 \div 3=5$
$7 \times 5=35$ and $35 \div 5=7$

Tell and write the time to 5 minutes past the hour on analogue and digital clocks and draw the hands on a clock face to show these analogue times.

Example:
Five minutes past 8
2:30
Six forty-five
Tell and write the time to 5 minutes to the hour on analogue and digital clocks and draw the hands on a clock face to show these analogue times.

Example:
Twenty minutes to 3
Ten to 4
1:35
Find the time 10 minutes later; use 10 minutes a an interval of time; begin to compare and sequence intervals of time.

Example:
5:45, 5:55
9:30, 9:40
9:30, 9:40
6:10, 6:20

Add mentally three 1-digit numbers, using known number facts and

 doublesExample:
$7+5+3$
$+4+8$
$+1$

Understand subtraction as difference and find this by adding to the next multiple of 10 , using bonds to 10

Example

$40-36(36+4=40)$
$30-27(27+3=30)$
$90-84(84+6=90)$

Use addition and subtraction and number bonds to 10 and 20 to solve problems in number stories.

Example:

Six baby elephants follow four adult elephants. How may elephants? $+4=10$
Scar bakes 8 cakes and Lukas bakes 12 cakes. How many cakes? 8 $2=20$

Derive and use related facts up to 100

Example:
 $0+30$

$65+35$
The temperature is $83^{\circ} \mathrm{C}$. How much does the temperature need to ise by to reach $100^{\circ} \mathrm{C}$?

